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Antiphase boundaries and stacking faults affect the deformation behaviour of

intermetallics. In an ordered c.p.h. (close-packed hexagonal) structure of D019

type (e.g. Mg3Cd, Ti3Al-based alloys), stable planar faults of two types are

possible on the basal plane. These are antiphase boundaries (APBs) and

complex stacking faults (CSFs), which are a combination of an APB and a

stacking fault. The latter can be either of shear or of climb type. If the bounding

partial dislocations of a CSF lie in its plane, then it is designated as a shear CSF,

otherwise it is called a climb CSF. A mathematical formulation of the theory of

diffraction from a D019 structure having a shear or climb type of CSF has been

carried out. The diffraction effects owing to the presence of these CSFs have

been found. Integrated intensities and widths of the re¯ections are affected.

These have been evaluated in terms of the probability of the occurrence of these

faults.

1. Introduction

Antiphase boundaries (APBs) signi®cantly affect the defor-

mation behaviour of intermetallics. Various types of APB are

possible in the ordered close-packed hexagonal (c.p.h.) D019

structure depending on the shift vector and the planes to

which these planar faults are parallel (Ghosal et al., 1993).

Complex stacking faults (CSFs) are characterized by a

combination of an APB and a stacking fault (SF) on the basal

plane. These planar faults can be formed during the passage of

dislocations through an ordered crystal or during growth and

impingement of different nuclei of order. The former will lead

to the formation of shear CSFs while the latter will give rise to

climb CSFs.

The ®rst mathematical formulation of the theory of X-ray

diffraction from APBs was carried out by Wilson (1943) (see

also Wilson & Zsoldos, 1966) for the L12 structure (ordered

face-centred cubic, Cu3Au type). Extensive X-ray studies on

Cu3Au have been undertaken by Mikkola & Cohen (1965,

1966). Studies of diffraction from APBs and CSFs in another

important structure, namely the ordered c.p.h. D019 type,

exhibited notably by Mg3Cd and Ti3Al, seem to be limited.

Prasad (1975) has worked on the theory of diffraction from

CSFs and APBs on basal planes in the D019 structure. He has

considered shear CSFs (denoted SF + APB by him) arising

from different crystallographically equivalent shift vectors to

be independent of each other. We believe that this distinction

is not physically realistic. The detailed differences between

our approach and that of Prasad are discussed later. Further,

he has not considered climb CSFs. We formulate here the

theory of diffraction from shear and climb CSFs. These CSFs

affect the re¯ections in two ways, namely by changing the

integrated intensity and by broadening the re¯ections. It needs

to be mentioned that, in the absence of ordering, shear and

climb CSFs on the basal plane will reduce to deformation

and growth faults, respectively. Wilson (1942) pioneered the

formulation of the theory of diffraction from growth faults in

c.p.h. structures while Christian (1954) considered deforma-

tion faults subsequently. The formulation of the theory is

subject to the following assumptions usual in this type of work:

(i) the crystal is in®nite in size and free of distortions; (ii) there

is no change in the lattice spacing at the CSFs; (iii) the CSFs

are distributed at random; and (iv) the CSFs extend over

entire domains.

2. Geometrical structure of shear CSFs

Consider the D019 structure shown in Fig. 1. Fig. 2 gives its

basal plane projection. Atoms on A, B and C layers are

represented respectively by large, medium and small circles.

Atomic species A and B are represented respectively by open

and ®lled circles. The sublattices I, II, III and IV are marked in

one unit cell. Here, the sites in the A layer are at zero height

while those in the B layer are at a height of 1
2c, which is shown

by 1
2 in one part of the ®gure. All sites in the A layer are joined

by continuous lines. B atoms occupy sublattice type IV sites

while A atoms occupy sublattice sites of types I, II or III as

shown in one unit cell. The letters A and B refer to the type of
² Present address: Defence Metallurgical Research Laboratory, Kanchanbagh,
Hyderabad 500 058, India. E-mail: parthaghosal@yahoo.co.in.
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close-packed layers as well as the type of atoms. However, this

should not cause any confusion, as the context will clarify the

meaning. Important directions are shown in the usual Miller±

Bravais notation while the corresponding planes are perpen-

dicular to the respective directions in this particular case.

A shear CSF can be created by a virtual process in which

one part of the crystal is shifted relative to the other part by a

vector denoted as the shift vector. We will consider here shift

vectors parallel to the basal plane that give rise to a shear or

mechanical type of CSF. The initial sequence of layers can be

written as

. . . AIVBIVAIVBIV . . . ;

where A and B indicate the layer type and the superscript

indicates the sublattice type occupied by B atoms. We now

consider the effect of the shift vector �1=6��1�100�. This moves

atoms lying initially at A positions to C positions (see Fig. 2).

Further, the B atoms now occupy sites of sublattice I instead of

IV. The ®rst change corresponds to the creation of an intrinsic

or deformation stacking fault while the second change leads to

the simultaneous formation of an APB. Thus, this fault is a

CSF. We can write the layer sequence as follows:

. . . AIVBIV ..
.
CIAI . . . ;

where the vertical dotted line indicates the position of the

CSF. Such a fault can also occur after an AIV layer instead of

BIV. In this case, the shift vector becomes �1=6���1100�, which is

equal in magnitude and opposite in direction to the earlier

shift vector. The layer sequence in this case is given by

. . . BIVAIV ..
.
CIBI . . . :

The shift vectors �1=6���1010� and �1=6��01�10� lead to shear

CSFs after BIV layers, owing to which B-atom occupancy

changes to sublattice types II and III, respectively. CSFs

occurring after AIV layers have opposite shift vectors.

3. Geometrical structure of climb CSFs

A climb CSF can arise through the following virtual process.

Begin by considering a normal sequence of layers as shown

below:

. . . AIVBIVAIVBIVAIVBIV . . . :

First remove one layer (say AIV indicated by adjoining vertical

lines in the ®rst sequence below). In the new sequence, a BIV

layer is followed by another BIV layer. This sequence is very

unfavourable energetically and the system can lower its

energy by a shift of the right half of the crystal (to the right of

the vertical line in the second sequence below) by �1=6���1100�
changing the BIV layer to a CI layer. The position of the

succeeding AIV layer shifts to that of a BI layer as shown in the

last sequence below.

. . . AIVBIV jAIV jBIVAIV . . .

. . . AIVBIV jBIVAIV . . .

. . . AIVBIV jCIAI . . .

�1=2��000�1�
� �1=6���1100�
� �1=6���110�3�:

As is clear from the ®nal sequence of layers, the virtual process

described above leads to the formation of a composite fault

made up of a growth fault and an APB. Since the shift vector,

�1=6���110�3�, is not parallel to the basal plane, we can call this a

climb CSF.

Figure 2
Basal plane projection of D019 structure. Atoms on A, B and C layers are
represented respectively by large, medium and small circles. Atomic
species A and B are represented respectively by open and ®lled circles.
The sublattices I, II, III and IV are marked in one unit cell.

Figure 1
D019 ordered c.p.h. structure. Empty circles denote A atoms and ®lled
circles denote B atoms of an A3B alloy.



4. General expression for the diffracted intensity

In terms of the conventional hexagonal basis vectors a1, a2, a3

(a1 and a2 being double the lattice vectors of the disordered

c.p.h. structure and a3 being equal to that for the disordered

structure), the position vector Rm of a unit cell at the (m1m2)

position in layer m3 of a possibly faulted D019 crystal is given

by

Rm � m1a1 �m2a2 � 1
2 m3a3 �Qm3

; �1�
where Qm3

is the displacement vector in the plane of the layer.

This vector takes different values in the presence or absence of

a CSF.

The diffracted intensity from such a crystal is given by

(Warren, 1969)

I�h3� � N 2
P
m

hexp�i�m�i exp��imh3�

� N 2
P
m

Jm exp��imh3�; �2�

where N is the number of layers and  2 is the intensity scat-

tered by one layer. The phase difference �m between rays

diffracted from the mth layer and the layer at the origin is

given by

�m � 2��hb1 � kb2 � h3b3� �Qm; �3�
where b1, b2, b3 are reciprocal-lattice vectors and hkh3 are the

corresponding coordinates of the reciprocal-lattice point with

h and k being integers and h3 a continuous variable.

It is evident that the problem of determining the diffracted

intensity reduces to ®nding the values of Jm. To evaluate Jm, we

express the phase difference as the sum of two phase differ-

ences and then replace the average of this sum by the product

of their averages. Thus,

hexp�i�m�i � hexp�i�mÿ1� exp�i��m ÿ �mÿ1��i
� hexp�i�mÿ1�tihexp�i��m ÿ �mÿ1��i: �4�

Denoting (�m ÿ �mÿ1) by ��m,mÿ1 and the corresponding

probability of the occurrence of such a phase difference by

Pm,mÿ1, we have

hexp�i�m�i �
P hexp�i�mÿ1�iPm;mÿ1 exp�i��m;mÿ1�; �5�

where the summation extends over all possible values of

��m,mÿ1. This leads to a recurrence relation, which can be

solved by using initial conditions (Prasad & Lele, 1971).

Values of Pm,mÿ1 for all possible values of ��m,mÿ1 are depicted

in a probability tree as discussed below.

5. Diffraction theory for shear CSFs on basal planes

To construct the probability trees, we adopt the following

procedure. Consider an A-type layer with B atoms on site IV

to be present on the (m ÿ 1) layer. In the absence of a shear

CSF, the next layer will be a B-type layer with B atoms again

on site IV. Similarly, an AIV layer will follow a BIV layer in the

absence of a shear CSF. The displacements and corresponding

phase differences in the two cases will respectively be

�1=3��1�100� � �1=3��1�10�; �2�=3��hÿ k�

and

�1=3���1100� � �1=3���110�; �2�=3��ÿh� k�:

In the presence of shear CSFs, the layer type, namely A, B

or C, can change. However, if there is no shear CSF between a

pair of layers, the phase difference between these layers is not

altered owing to the presence of shear CSFs at any other

location. To account for this fact, we will give a subscript 0 or 1

to the layer type (for example AIV
0 or AIV

1 ), depending on the

phase difference to the next layer (BIV
1 or CIV

0 ) being

�2�=3��hÿ k� or �2�=3��ÿh� k�, respectively, in the absence

of a shear CSF.

As mentioned earlier, in the presence of a shear CSF an AIV
0

layer, say, will be followed by a CI
1 layer. The displacement

vector for this case can be found by adding the displacement

vector without a shear CSF and the component of the shift

vector parallel to the plane of the CSF and is given by

�1=3��1�100� � �1=6���1100� � �1=6��1�100� � �1=6��1�10�:

Thus, the phase difference will be �2�=6��hÿ k�. It can be

shown by consideration of Fig. 2 that the same phase differ-

ence occurs for the following transitions in the presence of a

shear CSF:

�1�BIV
0 ! AI

1; �2�CIV
0 ! BI

1; �3�AI
0 ! CIV

1 ; �4�BI
0 ! AIV

1 ;

�5�CI
0 ! BIV

1 ; �6�AII
0 ! CIII

1 ; �7�BII
0 ! AIII

1 ; �8�CII
0 ! BIII

1 ;

�9�AIII
0 ! CII

1 ; �10�BIII
0 ! CII

1 ; �11�CIII
0 ! BII

1 :

In the same way, the displacement vectors and the phase

differences can be found for shear CSFs with the other two

possible shift vectors (Ghosal, 1996). In each case, we denote

the probability of occurrence of a shear CSF by � and thus the

probability for absence of a shear CSF is (1 ÿ 3�).

Taking the above facts into account, a probability tree has

been constructed and is shown in Fig. 3 along with the phase

differences. Similar trees can be drawn starting from B0 or

C0 layers by cyclic permutation. This ®gure also shows the

possibilities for transition from an (m ÿ 2) layer of type BIV
1 .

Using these trees, as well as similar ones, one can construct a

slightly different type of tree which shows all possible ways of

reaching a particular type of layer. Two typical trees of this

type are shown in Fig. 4.

We can write difference equations for Jm using the trees

constructed above. We distinguish the values of Jm for stacking

sequences terminating with layers having subscript 0 (say AIV
0 )

or 1 (say BIV
1 ) by giving the same superscript.
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J1
m�1 �

n
�1ÿ 3�� exp

h2�i

3
�ÿh� k�

i
� � exp

h2�i

6
�2h� k�

i
� � exp

h2�i

6
�ÿh� k�

i
� � exp

h2�i

6
�ÿhÿ 2k�

io
J0

m

�6�
J0

m �
n
�1ÿ 3�� exp

h2�i

3
�hÿ k�

i
� � exp

h2�i

6
�ÿ2hÿ k�

i
� � exp

h2�i

6
�hÿ k�

i
� � exp

h2�i

6
�h� 2k�

io
J1

mÿ1:

�7�
Introducing the following abbreviations for convenience,

" � exp��2�i=6��hÿ k��; � � 1� �ÿ1�h � �ÿ1�k; �8�
we have

J1
m�1 � ��1ÿ 3��"2 � �"��J0

m �9�
J0

m � ��1ÿ 3��"�2 � �"���J1
mÿ1; �10�

where * denotes complex conjugation. Substituting from (10)

into (9) and simplifying, we obtain

J1
m�1 � ��1ÿ 3��2 � 2��1ÿ 3��� cos�2�=6��hÿ k�

� �2�2�J1
mÿ1 �11�

This is the so-called characteristic equation and has solutions

of the form

Jm � C�m: �12�
Thus, (11) becomes

�2 � �1ÿ 3��2 � 2��1ÿ 3��� cos�2�=6��hÿ k� � �2�2

� ��Z�2: �13�
This quadratic equation has two solutions: Z0 and ÿZ1 with

Z0 = Z1 = Z. Consideration of different possible values of h

and k shows that the values of Z reduce to the following:

(a) h and k even (fundamental re¯ections):

(i) h ÿ k = 3N:

Z � 1: �14�
(ii) h ÿ k = 3N � 1:

Z � �1ÿ 9�� 27�2�1=2: �15�

(b) h or k odd (superlattice re¯ections):

(i) h ÿ k = 3N:

Z � �1ÿ 4��: �16�
(ii) h ÿ k = 3N � 1:

Z � �1ÿ 5�� 7�2�1=2: �17�
Fundamental re¯ections with h ÿ k = 3N are unaffected

(since Z is independent of �) while those with h ÿ k = 3N � 1

show a dependence on �. All superlattice re¯ections show a

dependence on � which is different for different (h ÿ k)

values.

Corresponding to the two roots of �, namely +Z0 and ÿZ1,

we can write a general solution for (12) of the form

Jm � C0�Z0�m � C1�ÿZ1�m; m � 0: �18�
A little consideration shows that, for negative values of m, we

can write

Figure 4
Probability trees showing all possible ways of reaching a particular type of
layer in the presence of shear CSFs.

Figure 3
Probability tree showing the probability of occurrence of shear CSFs. The
corresponding phase differences in units of 2� are also indicated.



Jm � C0�Z0�jmj � C1�ÿZ1�jmj; m< 0: �19�
Here, C0 and C1 are to be evaluated from the initial conditions

i.e. values of Jm for m = 0 and 1. These can be found by direct

computation from the probability trees.

J0 � 1 �20�
and

J1 � 1
2��1ÿ 3��"2 � �"�� �1ÿ 3��"�2 � �"���: �21�

Substituting the values found above for J0, J1 and Z in (18), we

obtain C0 and C1 for different values of h and k.

(a) h and k even (fundamental re¯ections):

(i) h ÿ k = 3N:

C0 � 1; C1 � 0: �22�
(ii) h ÿ k = 3N � 1:

C0 � 1
2ÿ

1

4�1ÿ 9�� 27�2�1=2

C1 � 1
2�

1

4�1ÿ 9�� 27�2�1=2
:

�23�

(b) h or k odd (superlattice re¯ections):

(i) h ÿ k = 3N:

C0 � 1; C1 � 0: �24�

(ii) h ÿ k = 3N � 1:

C0 � 1
2ÿ

�1ÿ 4��
4�1ÿ 5�� 7�2�1=2

C1 � 1
2�

�1ÿ 4��
4�1ÿ 5�� 7�2�1=2

:

�25�

6. Diffraction theory for climb CSFs on basal planes

As discussed earlier, in the presence of climb CSFs, the layer

type A, B or C can change. Further, even if there is no climb

CSF between a successive pair of layers, the phase difference

between these layers may be altered owing to the presence of

climb CSFs at other locations. This is due to the removal of a

layer at a climb CSF. However, as in the case of shear CSFs,

subscripts 0 or 1 can be assigned to the layers to account

for this change, depending on the displacement to the next

layer in the absence of a climb CSF being ��1=3��1�100� or

ÿ�1=3��1�100�, respectively. With this assignment, the stacking

sequences in the absence and presence of climb CSFs become:

. . . AIV
0 BIV

1 AIV
0 BIV

1 . . .

. . . AIV
0 BIV

1
..
.
CI

1BI
0 . . .

�1=6���110�3�:

In this sequence, the subscript 1 repeats at a climb CSF unlike

in the normal sequence. Similarly, we can produce a climb CSF

after an AIV
0 layer by the following steps:

. . . BIV
1 AIV

0
..
.
BIV

1
..
.
AIV

0 BIV
1 . . .

. . . BIV
1 AIV

0
..
.
AIV

0 BIV
1 . . .

. . . BIV
1 AIV

0
..
.
CI

0 AI
1 . . .

�1=2��000�1�

� �1=6��1�100�

� �1=6��1�10�3�:
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Figure 5
Probability tree showing the probability of occurrence of climb CSFs
along with the corresponding phase differences.

Figure 6
Probability trees showing all possible ways of reaching a particular type of
layer in the presence of climb CSFs.
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The displacement vector for this case can be found by adding

the displacement vector without a CSF and the component of

the shift vector parallel to the plane of the climb CSF, i.e.

0� �1=6��1�100� � �1=6��1�100� � �1=6��1�10�. Thus, the phase

difference will be �2�=6��hÿ k�.
In a similar way, the phase differences in going from AIV

0 to

CII
0 and CIII

0 can be shown to be �2�=6��ÿ2hÿ k� and

�2�=6��h� 2k�, respectively. In each case, we denote the

probability of occurrence of a climb CSF by � and thus the

probability for absence of a climb CSF is (1 ÿ 3�).

Taking the above facts into account, probability trees have

been constructed as shown in Figs. 5 and 6 for a few cases. We

can now write difference equations for Jm by the procedure

discussed for shear CSFs.

J1
m�1 �

h
�1ÿ 3�� exp

2�i

3
�hÿ k�

i
J0

m �
h
� exp

2�i

6
�hÿ k�

� � exp
2�i

6
�ÿ2hÿ k� � � exp

2�i

6
�h� 2k�

i
J1

m �26�

J0
m �

h
�1ÿ 3�� exp

2�i

3
�ÿh� k�

i
J1

mÿ1

�
h
� exp

2�i

6
�ÿh� k� � � exp

2�i

6
�2h� k�

� � exp
2�i

6
�ÿhÿ 2k�

i
J0

m: �27�

Introducing " and � from equation (8), we have

J1
m�1 � �1ÿ 3��"2J0

m � �"�J1
m �28�

J0
m � �1ÿ 3��"�2J1

mÿ1 � �"��J0
mÿ1: �29�

Solving (28) for J0
mÿ1, we have

J0
m �

J1
m�1 ÿ �"�J1

m

�1ÿ 3��"2
: �30�

Substituting from (30) for J0
m and J0

mÿ1 in (29) and simplifying,

we get

J1
m�1 � ��"� "���J1

m � ��1ÿ 3��2 ÿ �2�2�J1
mÿ1; �31�

which is the characteristic equation. Substituting from (12)

and solving for � yields

� � �� cos
2�

6
�hÿ k� �

h
�1ÿ 3��2 ÿ �2�2 sin2 2�

6
�hÿ k�

i1=2

:

�32�
We denote the roots with the positive and negative signs of the

discriminant respectively by Z0 and ÿZ1. Consideration of

different possible values of h and k shows that the values of Z0

and Z1 reduce to the following set.

(a) h and k even (fundamental re¯ections):

(i) h ÿ k = 3N:

Z0 � 1; Z1 � 1ÿ 6�: �33�
(ii) h ÿ k = 3N � 1:

Z0 � ÿ
3�

2
� �1ÿ 6�� 9�2=4�1=2

Z1 �
3�

2
� �1ÿ 6�� 9�2=4�1=2:

�34�

(b) h or k odd (superlattice re¯ections):

(i) h ÿ k = 3N:

Z0 � 1ÿ 4�; Z1 � 1ÿ 2�: �35�
(ii) h ÿ k = 3N � 1:

Z0 �
�

2
� �1ÿ 6�� 33�2=4�1=2

Z1 � ÿ
�

2
� �1ÿ 6�� 33�2=4�1=2:

�36�

The initial conditions can be found from the probability trees

given earlier (Figs. 5 and 6).

J0 � 1 �37�
J1 � 1

2 ��1ÿ 3���"2 � "�2� � ���"� "���: �38�
Substituting the values of J0, J1, Z0 and Z1 found above, we can

obtain C0 and C1 for different values of h and k. These are

given below.

(a) h and k even (fundamental re¯ections):

(i) h ÿ k = 3N:

C0 � 1; C1 � 0: �39�
(ii) h ÿ k = 3N � 1:

C0 �
�4ÿ 24�� 9�2�1=2 ÿ �1ÿ 3��

2�4ÿ 24�� 9�2�1=2

C1 �
�4ÿ 24�� 9�2�1=2 � �1ÿ 3��

2�4ÿ 24�� 9�2�1=2
:

�40�

(b) h or k odd (superlattice re¯ections):

(i) h ÿ k = 3N:

C0 � 1; C1 � 0: �41�
(ii) h ÿ k = 3N � 1:

C0 �
�4ÿ 24�� 33�2�1=2 ÿ �1ÿ 3��

2�4ÿ 24�� 33�2�1=2

C1 �
�4ÿ 24�� 33�2�1=2 � �1ÿ 3��

2�4ÿ 24�� 33�2�1=2
:

�42�

7. Diffraction effects from CSFs on basal planes

We have shown that, for both types of CSF, Jm can be

expressed in the form of (18) with different values for C0, C1,

Z0 and Z1 for shear and climb CSFs. On substitution of Jm in

the intensity expression [equation (2)], and performing the

summations of the geometric series, we can write

I�h3�=N 2 � C0

1ÿ Z2
0

1ÿ 2Z0 cos�h3 � Z2
0

� C1

1ÿ Z2
1

1� 2Z1 cos�h3 � Z2
1

: �43�

The denominators in the two terms in the above equation have

minimum values for h3 = l being even and odd integers,



respectively, and thus these terms give rise to corresponding

peaks for both types of CSF.

The intensity for a shear CSF probability of 0.05 is plotted

against h3 using (43) in Figs. 7, 8 and 9. Owing to the presence

of shear CSFs, the pro®les are generally broadened. Funda-

mental re¯ections with h ÿ k = 3N are not affected while

those with h ÿ k = 3N � 1 show appreciable but equal

broadening for even and odd values of l as illustrated in Fig. 7.

Superlattice re¯ections with h ÿ k = 3N and l even also show

considerable broadening. As is apparent from Fig. 9, super-

lattice re¯ections with h ÿ k = 3N � 1 show appreciable but

equal broadening for even and odd values of l. Further,

superlattice re¯ections with h ÿ k = 3N � 1 show a smaller

broadening than that for re¯ections with h ÿ k = 3N, as is

clear from Figs. 8 and 9.

The intensity for a climb CSF probability of 0.05 is plotted

as a function of h3 for fundamental and superlattice re¯ections

in Figs. 10, 11 and 12. For fundamental re¯ections with

h ÿ k = 3N � 1, peaks occur at h3 = l, where l is an integer as

shown in Fig. 10. Re¯ections with l even are considerably

broader than those with l odd. For superlattice re¯ections with

h ÿ k = 3N (Fig. 11), a broad peak occurs for h3 = l with l being

an even integer. On the other hand, for superlattice re¯ections

with h ÿ k = 3N � 1 (Fig. 12), broadened peaks occur at h3 = l

where l is an integer. The broadening of re¯ections with l odd

is somewhat greater than that for those with l even. Quanti-

tative aspects of broadening are discussed in the following

section.

7.1. Integrated Intensity

The total energy of the diffracted beam can be measured

and is known as the integrated intensity. In electron diffrac-

tion, double diffraction and dynamical effects are usually

present and as such the above kinematic treatment is not

applicable as far as integrated intensities are concerned

(Cowley, 1981). We, therefore, restrict our calculation of the

integrated intensity for powder diffraction pro®les.

An analytical expression for the integrated intensity, T, of a

re¯ection can be obtained by integrating the intensity over

one full period of the re¯ection. Corresponding to each of the

two maxima in I(h3), we have

Tj �
Z2

0

Cj

1ÿ Z2
j

1ÿ 2Zj�ÿ1�j cos�h3�Z2
j

" #
dh3

� 2Cj for j � 0 or 1: �44�
The values of C0 and C1 for shear as well as climb CSFs have

been given earlier. Utilizing these, one can evaluate the

changes in the integrated intensities owing to the presence of

shear and climb CSFs. The fractional changes in integrated

intensities owing to the simultaneous presence of shear and

climb CSFs for small values of the probabilities (respectively

�s and �c) of their occurrence can be found by assuming that

the effects are additive and are given below.

(a) h and k even (fundamental re¯ections):

(i) h ÿ k = 3N:

�T0=T0 � 0; �T1=T1 � 0: �45�
(ii) h ÿ k = 3N � 1:

�T0=T0 � ÿ�9=2��s; �T1=T1 � ��3=2��s: �46�

(b) h or k odd (superlattice re¯ections):

(i) h ÿ k = 3N:

�T0=T0 � 0; �T1=T1 � 0: �47�
(ii) h ÿ k = 3N � 1:

�T0=T0 � ��3=2��s; �T1=T1 � ÿ�1=2��s: �48�

Acta Cryst. (2003). A59, 153±162 P. Ghosal and S. Lele � D019 ordered c.p.h. structures 159

research papers

Figure 8
The diffracted intensity for superlattice re¯ections with h ÿ k = 3N for
�s = 0.05.

Figure 9
The diffracted intensity for superlattice re¯ections with h ÿ k = 3N � 1
for �s = 0.05.

Figure 7
The diffracted intensity for fundamental re¯ections with h ÿ k = 3N � 1
for �s = 0.05.



research papers

160 P. Ghosal and S. Lele � D019 ordered c.p.h. structures Acta Cryst. (2003). A59, 153±162

The integrated intensities of re¯ections with h ÿ k = 3N

remain unchanged while those for re¯ections with h ÿ k =

3N � 1 are affected by the presence of shear as well as climb

CSFs. However, the effects of the latter vanish for small values

of �c.

7.2. Integral breadth

Using the de®nition of integral breadth (�) as the ratio of

the integrated intensity and the pro®le maximum, we can write

in general

�j � 2
1ÿ Zj

1� Zj

for j � 0 or 1: �49�

The values of Z0 and Z1 for shear as well as climb CSFs have

been given earlier and yield the following expressions for

small values of the probabilities of occurrence of shear and

climb CSFs.

(a) h and k even (fundamental re¯ections):

(i) h ÿ k = 3N:

�o � 0: �50�
(ii) h ÿ k = 3N � 1:

�o � 9
2 ��s � �c�; �1 � 3

2 �3�s � �c�: �51�

(b) h or k odd (superlattice re¯ections):

(i) h ÿ k = 3N:

�o � 4��s � �c�: �52�
(ii) h ÿ k = 3N � 1:

�o � 5
2 ��s � �c�; �1 � 1

2 �5�s � 7�c�: �53�
The above expressions are for the integral breadth as a

function of h3 in reciprocal space. However, we experimentally

measure integral breadth in terms of 2� in degrees in a powder

pattern. The necessary diffraction geometry for obtaining the

relation between these quantities has been considered earlier

(Ghosal et al., 2003). The relation between the breadth in

reciprocal space (�) and the corresponding one in real space

[�(2�)�] is

��2��� � 360

�
lj j d

c

� �2

tan �

" #
�: �54�

8. Discussion

Prasad (1975) has earlier considered the diffraction effects of

shear CSFs on basal planes in a D019 structure. To compare his

results with ours, it is convenient to start with his characteristic

equation [equation (8)].

�4 ÿ 2�2��2
1 � �1ÿ �1�2� � �1ÿ 4�1 � 6�2

1�
ÿ 2�2

1 cos
2�

6
�hÿ k� � 0; �55�

where �1 is the probability of occurrence of CSFs with shift

vector 1=6�1�100�. Some of the higher-order terms in �1 have

been neglected by Prasad in writing the above equation. The

complete equation is

�4 ÿ 2�2��2
1 � �1ÿ �1�2� � ��4

1 ÿ �1ÿ �1�4�
ÿ 2�2

1�1ÿ �1�2 cos
2�

3
�hÿ k� � 0: �56�

It can be shown that the expression on the left-hand side can

be factorized. Only one of the two factors is physically rele-

vant and is given below:

�2 ÿ ��2
1 � �1ÿ �1�2� ÿ 2�1�1ÿ �1� cos

2�

6
�hÿ k� � 0: �57�

Figure 12
The diffracted intensity for superlattice re¯ections with h ÿ k = 3N � 1
for �c = 0.05.

Figure 11
The diffracted intensity for superlattice re¯ections with h ÿ k = 3N for
�c = 0.05.

Figure 10
The diffracted intensity for fundamental re¯ections with h ÿ k = 3N � 1
for �c = 0.05.



Simultaneous consideration of other types of shear CSF's

with probabilities �2 and �3 {shift vectors �1=6���1010� and

�1=6��01�10�, respectively} leads to the following generalized

characteristic equation:

�2 ÿ ��1 � �ÿ1�h�2 � �ÿ1�k�3�2 ÿ �1ÿ �1 ÿ �2 ÿ �3�2
ÿ 2��1 � �ÿ1�h�2 � �ÿ1�k�3��1ÿ �1 ÿ �2 ÿ �3�
� cos

2�

6
�hÿ k� � 0: �58�

It is easy to see that the above equation reduces to equation

(57) when �1 6� 0� �2� �3 and to equation (13) when �1� �2

� �3 � � 6� 0. Thus, there is no basic discrepancy between his

formulation and ours. We believe that the situation considered

by us is physically more realistic. Such CSFs are expected to

arise during deformation. For polycrystalline samples, the

applied stresses will be oriented randomly and, thus, there is

no reason to expect the differential formation of the three

types of CSF.

Further, Prasad does not carry out his analysis to a point

where directly usable results are obtained. For example, there

is no mention of the distinction between the effects for

fundamental and superlattice re¯ections and the conditions on

h and k mentioned are incomplete in several cases.

We mention some of the salient features of the results by

consideration of the more general equation (58). The

diffraction effects for fundamental re¯ections are identical to

those discussed above except that � should be interpreted as

an average of �1, �2 and �3. This can be clearly seen by letting

h and k be even numbers in equation (58) and comparing with

equation (13).

Superlattice re¯ections (h or k odd) require more detailed

consideration. We have to consider three possibilities, namely

(i) h and k odd, (ii) h odd and k even, (iii) h even and k odd.

For the ®rst case, equation (58) has the solutions

� � ��1ÿ 2�2 ÿ 2�3�

� � � 1ÿ 3�1 � �2 � �3

2

� � for hÿ k � 3N

for hÿ k � 3N � 1;

yielding the following integral breadths for re¯ections with h

and k odd:

� � 2��2 � �3�
� � �3�1 � �2 � �3�=2

for hÿ k � 3N

for hÿ k � 3N � 1:

Similarly, for re¯ections with h odd and k even, we have

� � 2��3 � �1�
� � ��1 � 3�2 � �3�=2

for hÿ k � 3N

for hÿ k � 3N � 1

and ®nally, for those with h even and k odd, we obtain

� � 2��1 � �2�
� � ��1 � �2 � 3�3�=2

for hÿ k � 3N

for hÿ k � 3N � 1:

It is interesting to note that these expressions become iden-

tical for �1 � �2 � �3 � � (treated by us) but are distinct for

cases such as those with �1 6� 0 � �2 � �3 (considered by

Prasad). However, for re¯ections in powder patterns, a given

re¯ection has several components and one observes an

average broadening. Since an equal number of components

corresponding to each of the above cases are present in any

powder re¯ection, we have

� � 4��1 � �2 � �3�=3

� � 5��1 � �2 � �3�=6

for hÿ k � 3N

for hÿ k � 3N � 1:

Thus, the distinction mentioned above is lost for powder

re¯ections and the only observable quantity is

��1 � �2 � �3� � 3 ��.

The diffracted intensity as given by equation (43) for � =

0.05 is plotted as a function of h3 in Figs. 7 to 12. The funda-

mental re¯ections with h ÿ k = 3N are unaffected by shear or

climb CSFs on basal planes and exhibit delta peaks in re-
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Table 1
Diffraction effects of CSFs in D019 structures.

Diffraction effects

Fundamental re¯ections Superlattice re¯ections

Plane Shift vector Fault h ÿ k = 3N h ÿ k = 3N � 1 h ÿ k = 3N h ÿ k = 3N � 1

(0001) 1=6h�1100i Shear CSF (i) Integrated intensity
unaffected

(i) Integrated intensity
affected; fractional
change (for � � 1) is
ÿ9�/2 for l even and
+3�/2 for l odd.

(i) Integrated intensity
unaffected

(i) Integrated intensity
affected; fractional
change (for � � 1) is
+3�/2 for l even and
ÿ�/2 for l odd.

(ii) No peak broadening (ii) Integral breadth is
proportional to 9�/2
(for �� 1)

(ii) Integral breadth (for
�� 1) is proportional
to 4�

(ii) Integral breadth (for
�� 1) is proportional
to 5�/2.

(iii) No peak asymmetry (iii) No peak asymmetry (iii) No peak asymmetry (iii) No peak asymmetry
(0001) 1=6h�110�3i Climb CSF (i) Integrated intensity

unaffected
(i) Integrated intensity

affected; no effects to
®rst order

(i) Integrated intensity
unaffected

(i) Integrated intensity
affected; No effects to
®rst order

(ii) No peak broadening (ii) Integral breadth (for
�� 1) is proportional
to 9�/2 for l even and
3�/2 for l odd

(ii) Integral breadth (for
�� 1) is proportional
to 4�

(ii) Integral breadth (for
�� 1) is proportional
to 5�/2 for l even and
7�/2 for l odd.

(iii) No peak asymmetry (iii) No peak asymmetry (iii) No peak asymmetry (iii) No peak asymmetry
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ciprocal space. Hence, these are not illustrated. Further, the

integrated intensity of superlattice re¯ections with h ÿ k = 3N

is unchanged [equation (47) and Figs. 8 and 10]. On the other

hand, for re¯ections with h ÿ k = 3N � 1 and l even, the

integrated intensity of fundamental re¯ections decreases

sharply while that of superlattice re¯ections increases some-

what, the change being linearly proportional to the shear fault

probability. A similar but opposite effect occurs for the case of

h ÿ k = 3N � 1 and l odd re¯ections. Climb CSFs do not affect

the integrated intensity to ®rst order in the fault probability.

As regards pro®le broadening, fundamental re¯ections with

h ÿ k = 3N are not broadened while the broadening is

proportional to (9�s � 9�c) and (9�s � 3�c) for those with

h ÿ k = 3N � 1 and l even and odd, respectively. For super-

lattice re¯ections with h ÿ k = 3N, the broadening is propor-

tional to (8�s � 8�c) and for those with h ÿ k = 3N � 1 and

l even and odd, respectively, it is proportional to (5�s � 5�c)

and (5�s � 7�c). For fundamental re¯ections, the integral

breadths are not affected by pure APBs and thus we should

expect shear and climb CSFs to exhibit effects similar to those

of deformation and growth faults in a disordered c.p.h.

structure. Christian (1954) and Wilson (1942) have formulated

the theory of diffraction for these situations. A comparison

with their results shows that the change in integrated intensity

and the broadening in the two cases are identical if Christian's

deformation fault probability or Wilson's growth fault prob-

ability is identi®ed to be equal to our 3�.

Measurements of changes of integrated intensities of

fundamental or superlattice re¯ections with h ÿ k = 3N � 1

can directly yield a value for �s. However, the accuracy of

these measurements is generally not suf®ciently high for

satisfactory evaluation of �s. Measurements of integral

breadths of fundamental re¯ections with h ÿ k = 3N � 1 and

l even or superlattice re¯ections with l even yield an estimate

of (�s � �c). Similarly, fundamental and superlattice re¯ec-

tions with h ÿ k = 3N � 1 and l odd yield estimates for

(3�s � �c) and (5�s � 7�c), respectively. Combining the

second estimate with either the ®rst or third estimates can lead

to suf®ciently accurate independent estimates of �s and �c.

Shear or climb CSFs do not cause any asymmetry in the

re¯ections in reciprocal space. However, as pointed out by

Guinier (1963), re¯ections of the type kh0 show a pro®le

asymmetry in 2� space when they are broadened along h3 in

reciprocal space. This is purely due to geometrical effects and

the asymmetry is con®ned only to real space (2� space), and

thus should not be confused with the asymmetry in reciprocal

space due to any other fault while analysing the diffraction

effects. This geometrical pro®le asymmetry due to line

broadening is negligible for re¯ections other than kh0.

9. Conclusions

The diffraction effects of shear and climb CSFs lying on basal

planes of a D019 structure are summarized in Table 1. The

shear and climb CSF probabilities can be evaluated by

measuring the pro®le broadening (and the integrated inten-

sity) for a suitable set of re¯ections. This can in turn be used to

calculate the CSF energy, which is an important property

governing the deformation behaviour of the material.

However, the diffraction effects due to the possible presence

of other faults or APBs lying on basal as well as non-basal

planes need also be considered in order to understand and

correlate the observed effects properly.
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